|
【日經BP社報導】日本九州大學最先端有機光電子研究中心
| TADF的原理。三重態(T1)的激子受熱後會「升」至一重態(S1)。(圖片由OPERA提供)(點擊放大) | (OPERA)宣佈,開發出了雖為螢光材料但內部量子效率卻基本上達到100%的有機EL新發光材料。以前內部量子效率高的材料僅限于使用稀有金屬的磷光材料,而新材料不使用稀有金屬。OPERA將該材料命名為「Hyperfluorescence」。OPERA負責人、九州大學教授安達千波矢介紹說,「該材料不需要磷光材料」。詳細論文已發表在《Nature》上。
有機EL發光材料根據發光原理的不同分為螢光材料和磷光材料。螢光材料只在激子(exciton)經由「一重態」的自旋狀態時才會再結合(發光)。而磷光材料除一重態外經由三重態的自旋狀態也會發光。由於一重態和三重態以1:3的比例發生,因此螢光材料的內部量子效率最大為25%,而磷光材料最大為100%。在螢光材料中,三重態激子的能量一般未用於發光,幾乎全部以熱量方式損失掉。
這一現象在有機EL元件發光效率的不同上體現得非常明顯。因此,在有機EL顯示器及有機EL照明的開發中,使用磷光材料的比例在不斷增加。發光效率超過50lm/W的有機EL元件除藍色發光材料外還可用磷光材料實現。但磷光材料還存在多項課題。比如:(1)磷光材料含有稀有金屬,材料昂貴;(2)美國環宇顯示技術(Universal Display,UDC)掌握著磷光材料的基本專利,使用時要與該公司談判;(3)藍光磷光材料其發光壽命短,幾乎沒有可實用的材料,等等。
| | 此次開發的材料的示例(點擊放大) | 使用新材料試製的有機EL面板的示例(點擊放大) |
近來業界卻發現了幾種雖為螢光材料但內部量子效率卻超過25%的材料。OPERA的安達研究室十分關注這一現象,將其發光原理之一稱為「熱活性型延遲螢光(TADF)」,對提高其發光效率的材料設計展開了研究。
TADF只在激子經由一重態時才發光,從這一意義來說它屬於螢光材料。但三重態激子受熱後會「激勵」成一重態。這樣便有望使全部的激子為發光做出貢獻。
此次安達研究室利用TADF的原理開發出了內部量子效率達到90%以上的材料。這是一種由5~9個苯環構成的低分子材料,不需要稀有金屬及稀土族元素。另外還試製了使用該材料的有機EL元件及顯示器。據稱外部量子效率達到19%以上,獲得了與使用磷光材料的元件相匹敵的結果。目前效率最高的是綠色發光材料,但安達表示,「包括深藍色在內的幾乎所有顏色的發光,新材料都已經有了實現的眉目」。(記者:野澤哲生,《日經電子》)
http://big5.nikkeibp.com.cn/news/nano/63929-20121214.html
有無專利限制?
|
|